Mathematics
Now I show you eight ways to memorize math formulas in easy ways. Some students are afraid of studying mathematics formulas. But for me, mathematics is not only limited to learning from textbooks. It is about solving and easy ways to understanding with solving problems.
Mathematics formulas are the best way to make this subject for our goal lives. Therefore, learning math must be confidence and enhance our problems solving skills. Some of you are very tough and confusing to memorize all the math formulas in one go. So here is eight ways to memorize math formulas in an easy way.
1. Grow your interest in the concept in which you are studying: It is very important for you to concept something that you are interest in short words. It is always easier for understanding and learning.
2. Connect your concept with a visual memory: Visual memory is predominantly things that you can attach with each math formulas will help you to remember all steps of predominant.
3. Knowing the process behind math formulas: It is certain to know the entire reason or process that easier for us to remember as it makes more sense and helpful to memorize.
4. Always solve the problems: Practicing is the perfect ways for using repeatedly as repetition leads to memorization.
5. Write down math formulas: Write math repeated it again and again for our brain tend to remember as for long.
6. Stick your written formulas on the wall: Write down on plain paper or wall make sure your feeling tough slowly to your brain that help you to remember by seeing those.
7. Recall all math formulas before bedtime: Learning all that days before bed make sure your brain better chance of remembering.
8. Don't distract yourself while learning formulas: Give less attention to everything that distract you . You just focus on learning.
studying bellow please
2. (α+в)²= (α-в)²+4αв
3. (α-в)²= α²-2αв+в²
4. (α-в)²= (α+в)²-4αв
5. α² + в²= (α+в)² - 2αв.
6. α² + в²= (α-в)² + 2αв.
7. α²-в² =(α + в)(α - в)
8. 2(α² + в²) = (α+ в)² + (α - в)²
9. 4αв = (α + в)² -(α-в)²
10. αв =1. (α + в + ¢)² = α² + в² + ¢² + 2(αв + в¢ + ¢α)
11. (α + в)³ = α³ + 3α²в + 3αв² + в³
12. (α + в)³ = α³ + в³ + 3αв(α + в)
13. (α-в)³=α³-3α²в+3αв²-в³
14. α³ + в³ = (α + в) (α² -αв + в²)
15. α³ + в³ = (α+ в)³ -3αв(α+ в)
16. α³ -в³ = (α -в) (α² + αв + в²)
17. α³ -в³ = (α-в)³ + 3αв(α-в)
18. ѕιη0° =0
19. ѕιη30° = 1/2
20. ѕιη45° = 1/√2
21. ѕιη60° = √3/2
22. ѕιη90° = 1
23. ¢σѕ ιѕ σρρσѕιтє σƒ ѕιη
24. тαη0° = 0
25. тαη30° = 1/√3
26. тαη45° = 1
27. тαη60° = √3
28. тαη90° = ∞
29. ¢σт ιѕ σρρσѕιтє σƒ тαη
30. ѕє¢0° = 1
31. ѕє¢30° = 2/√3
32. ѕє¢45° = √2
33. ѕє¢60° = 2
34. ѕє¢90° = ∞
35. ¢σѕє¢ ιѕ σρρσѕιтє σƒ ѕє¢
36. 2ѕιηα¢σѕв=ѕιη(α+в)+ѕιη(α-в)
37. 2¢σѕαѕιηв=ѕιη(α+в)-ѕιη(α-в)
38. 2¢σѕα¢σѕв=¢σѕ(α+в)+¢σѕ(α-в)
39. 2ѕιηαѕιηв=¢σѕ(α-в)-¢σѕ(α+в)
40. ѕιη(α+в)=ѕιηα ¢σѕв+ ¢σѕα ѕιηв.
41. » ¢σѕ(α+в)=¢σѕα ¢σѕв - ѕιηα ѕιηв.
42. » ѕιη(α-в)=ѕιηα¢σѕв-¢σѕαѕιηв.
43. » ¢σѕ(α-в)=¢σѕα¢σѕв+ѕιηαѕιηв.
44. » тαη(α+в)= (тαηα + тαηв)/ (1−тαηαтαηв)
45. » тαη(α−в)= (тαηα − тαηв) / (1+ тαηαтαηв)
46. » ¢σт(α+в)= (¢σтα¢σтв −1) / (¢σтα + ¢σтв)
47. » ¢σт(α−в)= (¢σтα¢σтв + 1) / (¢σтв− ¢σтα)
48. » ѕιη(α+в)=ѕιηα ¢σѕв+ ¢σѕα ѕιηв.
49. » ¢σѕ(α+в)=¢σѕα ¢σѕв +ѕιηα ѕιηв.
50. » ѕιη(α-в)=ѕιηα¢σѕв-¢σѕαѕιηв.
51. » ¢σѕ(α-в)=¢σѕα¢σѕв+ѕιηαѕιηв.
52. » тαη(α+в)= (тαηα + тαηв)/ (1−тαηαтαηв)
53. » тαη(α−в)= (тαηα − тαηв) / (1+ тαηαтαηв)
54. » ¢σт(α+в)= (¢σтα¢σтв −1) / (¢σтα + ¢σтв)
55. » ¢σт(α−в)= (¢σтα¢σтв + 1) / (¢σтв− ¢σтα)
56. α/ѕιηα = в/ѕιηв = ¢/ѕιη¢ = 2я
57. » α = в ¢σѕ¢ + ¢ ¢σѕв
58. » в = α ¢σѕ¢ + ¢ ¢σѕα
59. » ¢ = α ¢σѕв + в ¢σѕα
60. » ¢σѕα = (в² + ¢²− α²) / 2в¢
61. » ¢σѕв = (¢² + α²− в²) / 2¢α
62. » ¢σѕ¢ = (α² + в²− ¢²) / 2¢α
63. » Δ = αв¢/4я
64. » ѕιηΘ = 0 тнєη,Θ = ηΠ
65. » ѕιηΘ = 1 тнєη,Θ = (4η + 1)Π/2
66. » ѕιηΘ =−1 тнєη,Θ = (4η− 1)Π/2
67. » ѕιηΘ = ѕιηα тнєη,Θ = ηΠ (−1)^ηα
1. 1. ѕιη2α = 2ѕιηα¢σѕα
2. 2. ¢σѕ2α = ¢σѕ²α − ѕιη²α
3. 3. ¢σѕ2α = 2¢σѕ²α − 1
4. 4. ¢σѕ2α = 1 − ѕιη²α
5. 5. 2ѕιη²α = 1 − ¢σѕ2α
6. 6. 1 + ѕιη2α = (ѕιηα + ¢σѕα)²
7. 7. 1 − ѕιη2α = (ѕιηα − ¢σѕα)²
8. 8. тαη2α = 2тαηα / (1 − тαη²α)
9. 9. ѕιη2α = 2тαηα / (1 + тαη²α)
10. 10. ¢σѕ2α = (1 − тαη²α) / (1 + тαη²α)
11. 11. 4ѕιη³α = 3ѕιηα − ѕιη3α
12. 12. 4¢σѕ³α = 3¢σѕα + ¢σѕ3α
» ѕιη²Θ+¢σѕ²Θ=1
» ѕє¢²Θ-тαη²Θ=1
» ¢σѕє¢²Θ-¢σт²Θ=1
» ѕιηΘ=1/¢σѕє¢Θ
» ¢σѕє¢Θ=1/ѕιηΘ
» ¢σѕΘ=1/ѕє¢Θ
» ѕє¢Θ=1/¢σѕΘ
» тαηΘ=1/¢σтΘ
» ¢σтΘ=1/тαηΘ
» тαηΘ=ѕιηΘ/¢σѕΘ